High-speed, Highly Sensitive On-site Testing Kits for Agriculture

Masaya Miyazaki CEO & Founder HaKaL inc.

About HaKaL inc.

- Origin: University-based startup (Kyushu University)
- Founder & CEO: Masaya Miyazaki, Ph.D.
 - Ph.D. (Saga University, 1995); Postdoc, Joslin Diabetes Center / Harvard Medical School (1995–1996)
 - Former PI & Group Leader at AIST (2000–2016)
 - Visiting Professor, Kyushu University (2025– present)
- Co-Founder: Prof. Yuji Oki
 - Ph.D. (Kyushu University)
 - Professor at Graduate School of Information
 Science and Electrical Engineering (2007- present)

Milestones

2020 – HaKaL founded to commercialize on-site diagnostics

2021 – present – Joint R&D network established (Kyushu Univ., AIST, Kumamoto Univ., other partners)

2022 – Nishim Electric Award, Kyushu Electricity Open

Innovation Program

2023 – 2025 – METI Go-Tech (R5–R7): field pilots with livestock/ag partners

2023– Research Grant, Kyutech Foundation

2023– Research Grant, Kakihara Science Foundation

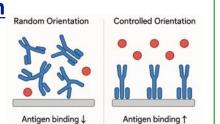
2025 – Fukuoka Prefecture Leading Project (R7)

2025 – Nippn Award, Agritech Grandprix (Leave a nest)

2025 - Selected for ISSIN 2025, Fukuoka Prefecture's

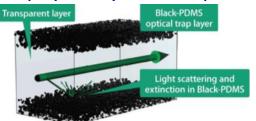
innovation acceleration program

HaKaL's Core Technologies

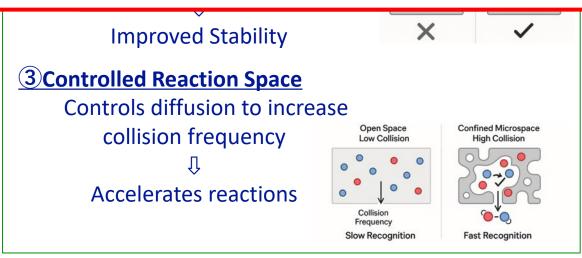

Microchemical Analysis

AIST/HaKaL (Miyazaki)

1Controlled Molecular Orientation


Optimize Molecular Recognition

Improved Reaction Efficiency


- Device Fabrication Technologies
- **1**Silicone Optics/Laser Technology (Oki)

Thermally and physically stable optical components

2 Cantrallad Surface Chamictry

By integrating these technologies, HaKaL develops simple, affordable, rapid, and highly sensitive on-site diagnostic systems.

Quantum Spatial Filters/MEMS (Dr. Nakashima)

Spatial design for optical control

Agricultural Issues & Solutions

AGRICULTURAL ISSUES

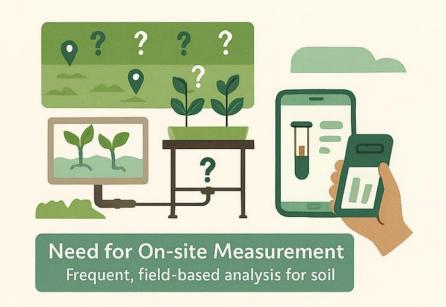
- Nutrient imbalance in soil
- Health management of livestock
- Contaminated irrigation or groundwater

ON-SITE MEASUREMENT SOLUTIONS

- Portable analyzer and smartphone-based readout
- Quantifies nutrients, minerals and pathogens directly in the feld
- Data can be linked to cloud platforms for smart farming

Current Status of Soil Testing

Current Status and Challenges in Soil and Water Quality Analysis

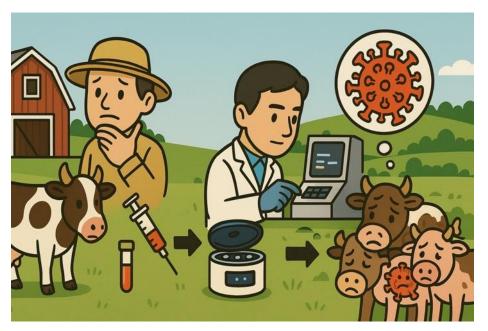

Current Practice

- Lab-based testing
- Limited sampling frequency
- Time delay in obtaining results
- Expensive and requires transport

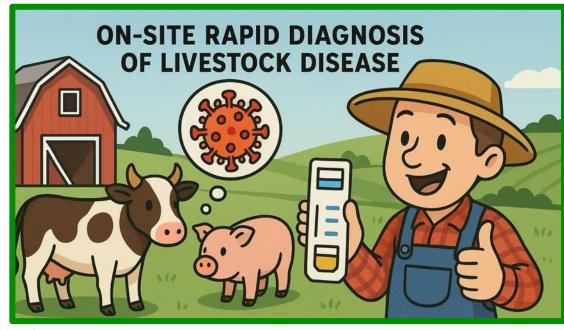
Challenges

- Data gaps between sampling times
- Hard to manage field-level variations
- No real-time foedback
- Not suitable for precision farming

HaKaL's Solution for Soil/Water Analysis



- 1. Portable analyzer and smartphone-based readout
- 2. Quantifies nutrients, minerals, and pathogens directly in the field
- 3. Rapid, reagent-based testing for soil, water, and livestock samples
- 4. Data can be linked to cloud platforms for smart farming


Current Status and Purpose of Veterinary Medical Testing

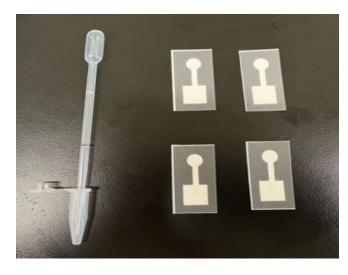
Conventional Methods

- ✓ Farmers typically request testing only after visible symptoms appear.
- ✓ Laboratory methods are accurate but costly and time-consuming.
- ✓ By the time results are returned, infections have often spread within the herd.

HaKaL's Goal

- ✓ Farmers can perform testing themselves, onsite.
- ✓ Affordable, rapid, and simple.
- Enables early detection and prevents outbreaks through timely isolation.

HaKaL's Solution for Veterinary Medical Testing


High-speed, Highly Sensitive Immunoassay Kit

- ✓ The test is completed within 15 minutes.
- ✓ Tests cost less than 1,500 yen per test.
- ✓ Achieves sensitivity approaching that of PCR.

Go-Tech Project (METI)

Paper Microfluidic ELISA Device

- ✓ The test is completed within 20 minutes.
- ✓ Tests cost less than 500 yen per test.
- ✓ Suitable for large-scale testing.

Leading Project, Fukuoka Pref.

Collaboration Opportunities

Bridging Field Sensing and Digital Agriculture Platforms

- 1. Soil & Water Data Integration Connect on-site chemical measurements with cloud / AI systems for unified farm data.
- 2. Real-time Monitoring & Prediction Use frequent field measurements to enhance satellite and IoT analytics for precision agriculture.
- 3. Digital Twin & Smart Farm Models Feed nutrient and water-quality data into digital twin platforms to optimize irrigation and fertilization.
- 4. Sustainability & ESG Traceability Support nitrate and heavy-metal monitoring for sustainable water use and compliance reporting.
- 5. One Health Data Platform Link livestock data for integrated disease and environmental risk management.

Impact Summary

- Create a data bridge between on-site sensing and cloud analytics
- Enable real-time, science-based agricultural decisions
- Contribute to sustainability and One Health goals

